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Abstract

Differential privacy (DP) is increasingly recognized as a critical framework for preserving
privacy in natural language processing (NLP). Despite attempts to apply DP in textual
data, most approaches are focused on using the privacy budget at the word level. As
such, a research gap exists regarding handling the limited privacy budget within sentences.
Particularly, the reasonable distribution of the privacy budget across individual words in a
sentence considering preserving privacy is an open question.

The main goal of this thesis is to establish a concept of sentence-level privacy through
leveraging a linguistics-based analysis. Through a comprehensive review of research on
DP concepts, this study investigates the research gap. Then, we suggest a new approach to
achieve sentence-level DP handling the distribution problem with a limited privacy budget.
The underlying hypothesis is that words with more information are more likely to be worthy
of privacy protection. Therefore, for the distribution mechanism, we integrate linguistic
methodologies to quantify word informativeness. We develop a privacy budget distribution
framework prototype that distributes given epsilon values to individual tokens in the sentence
based on integrated linguistic analysis. The usage of the prototype is presented with examples.

The impact on privacy preservation and utility maintenance of the epsilon distribution
applied to different differential privacy mechanisms on NLP will be evaluated on various
datasets. The result shows that the data perturbed with the suggested approach have better
privacy preservation while maintaining the utility scores in most cases.

By introducing privacy budget distribution based on the analysis at the sentence level,
this thesis contributes to advancing the concept of sentence-level differential privacy with
a linguistic approach. Moreover, this work provides a practical solution for applying DP in
NLP to handle a limited privacy budget. Finally, we suggest directions for future research to
improve the here presented approach.

KEYWORDS:
Differential Privacy, Natural Language Processing, Privacy Budget Distribution
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1 Introduction

1.1 Motivation

The exponential growth of text-based data in various Natural Language Processing (NLP)
applications underscores the importance of safeguarding individuals’ privacy and confiden-
tiality. Many NLP domains deal with text data containing highly sensitive information about
individuals, e.g. names, addresses, medical conditions or private conversations revealing
personal opinions. As data volumes surge, ensuring the protection of personal information
contained within textual data becomes increasingly critical.

Differential Privacy (DP) has emerged as a promising framework for addressing data
privacy concerns, providing robust guarantees through statistical methods. Its goal is to
enable meaningful data analysis while minimizing the impact of individual data inclusion or
exclusion on computation or analysis results, thereby safeguarding individuals’ privacy.

Despite claims and attempts to apply DP in NLP, its potential applications in this domain
remain largely unexplored. Especially, there is a gap in the research regarding the application
of DP at the sentence level, particularly concerning the allocation of varying privacy budgets
to different parts of the data. This gap highlights a need for studies focusing on distributing
privacy budgets at a higher level within textual data than at the word level.

In this work, we propose a new approach: distributing the privacy budget to individual
tokens within sentences to apply DP at the sentence level in the context of NLP. The individ-
ualized budget is calculated based on the quantified informativeness of each token in the
sentence. Then, we evaluate the application of the privacy budget distribution by applying it
to actual DP mechanisms.

1.2 Research Questions

The following research questions will be addressed to achieve the goals outlined in the
motivation.

• RQ1: How can Differential Privacy be effectively applied at the sentence level within
Natural Language Processing, considering the intelligent distribution of privacy budgets
for individual words within a sentence?

• RQ2: How can the theoretical concepts of sentence-level privacy with informativeness
analysis be translated into an implementable framework?

• RQ3: How well does the suggested differential privacy framework protect private data
while preserving the utility of the text data?

1



1.3. THESIS OVERVIEW

At the heart of this investigation lies the concept of word informativeness, an essential
hypothesis underpinning this study. We assume that words with higher informativeness
are more likely to contain sensitive or private information that might connote identity and
thus require protection. While the specific words or sections of text necessitating privacy
protection may vary based on task objectives, data sources, or individual interpretations of
privacy, this research assumes that words with greater informational content have a higher
chance of containing private information warranting safeguarding.

1.3 Thesis Overview

This thesis is structured as follows:
Introduction: This chapter sets the stage for the thesis by presenting the motivation

behind the research, highlighting the significance of applying DP in NLP. It also introduces
the research questions addressed in the study and provides a brief overview of the thesis
structure.

Theoretical Background: the foundational concepts of DP and its relevance to NLP are
explored in detail in this chapter. It lays the groundwork by explaining the fundamental
principles of DP. It introduces NLP notions and techniques relevant to this work and the
methodologies to quantify word informativeness or significance in NLP.

Literature Review: This chapter examines prior research and studies in the field, identifying
gaps, challenges, and opportunities for further investigation.

Methodology: Divided into several sections, this chapter details the methods employed
in this thesis. It includes a thorough review of the structure, the implementation of a
prototype for the distribution of privacy budget to each word in a sentence, and the evaluation
methodology and process adopted to assess the effectiveness of the proposed approach.

Results: Here, the results obtained from prototyping and subsequent prototype evaluation
are presented and analyzed. The chapter provides insights into the effectiveness of the
suggested framework in preserving privacy while maintaining the utility of the text data.

Discussion: This chapter discusses the key findings and the implications derived from
the results. It also addresses any challenges encountered during the study and offers
recommendations for future research directions.

Conclusion: The final chapter summarizes the essential points and contributions of the
study.
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2 Theoretical Background

2.1 Epsilon Differential Privacy

Differential Privacy, proposed by Dwork in 2006 [1], stands out as a robust framework
in the realm of privacy-enhancing technologies. It ensures a high level of privacy while
preserving the accuracy of statistical information, thus safeguarding individual data from
being discerned. Here, privacy means preventing individual records from being identified.
Essentially, it addresses the vital need to protect sensitive information from unauthorized
access or disclosure, while still permitting meaningful data analysis.

The basic idea is to introduce noise to data sets, therefore making it harder to identify
specific individuals while not interrupting statistical analysis, ensuring that the results are still
statistically meaningful. Several techniques, such as the Laplace Mechanism or the Gaussian
Mechanism, are used to determine the amount of noise to be added [2].

It sets a privacy budget parameter, epsilon, denoted by ϵ, to limit the probabilistic risks
associated with data disclosures and determine the scale of the noise to be added [3]. The
privacy budget represents the maximum amount of privacy that can be compromised during
the data analysis, where lower epsilon values indicate stronger privacy guarantees. This means
the noise magnitude increases with decreasing ϵ, providing stronger privacy guarantees at
the cost of increased noise.

Overall, epsilon differential privacy’s primary goal is finding the right balance between
preserving privacy and maintaining data utility [4]. In the context of DP, maintaining utility
involves ensuring that the analysis or processing of data remains accurate and meaningful
while preserving privacy. Maximizing utility consists of ensuring that the insights or pre-
dictions derived from the data remain as precise and informative as possible despite the
privacy-preserving mechanisms applied. However, the noise level added to ensure privacy
can potentially degrade the utility of the data for specific tasks.

This observation, however, is general: an inherent trade-off between utility and privacy is
a key characteristic of every DP approach [5], therefore, it cannot lead to a one-size-fits-all
solution. Increasing privacy protections, such as by adding more noise in DP mechanisms,
can often lead to a decrease in data utility, as the noise introduced may distort the original
data and compromise the accuracy of analyses or models. Conversely, maximizing utility
without adequate privacy protections can result in privacy breaches and the unauthorized
disclosure of sensitive information.

3



2.2. DIFFERENTIAL PRIVACY IN NATURAL LANGUAGE PROCESSING

2.2 Differential Privacy in Natural Language Processing

Differential Privacy is being considered as a solution to address privacy issues in NLP tasks
since NLP methods often involve processing large amounts of data, which may include
private or personally identifiable information. Especially with emerging interest and research
with large language models and other NLP technologies, NLP applications often involve
sensitive data, so adapting differential privacy to NLP methods is an active area of study
aimed at developing effective techniques for preserving privacy in text-based tasks.

However, as the concept of Differential Privacy was initially designed for structured data
sets, it is challenging to apply DP in NLP. The NLP tasks often involve processing large
amounts of unstructured text data, making applying DP without compromising the utility
challenging [6].

2.3 Basics of Natural Language Processing

This section explains the basic notion of NLP used in this research.

2.3.1 Preprocessing

Preprocessing in NLP refers to the steps and techniques applied to raw text data before it is
used for analysis or modelling tasks. It aims to clean, normalize, and transform the raw text
into a format suitable for downstream NLP tasks [7]. The preprocessing typically involves
several common steps:

• Tokenization: Breaking the text into smaller linguistic units called tokens. These tokens
can be words, sub-words, or characters, depending on the granularity required for the
task.

• Lower-casing: Converting all text to lowercase ensures consistency and reduces vocabu-
lary size. This step helps in treating words with different cases (e.g., "Hello" and "hello")
as the same token.

• Removing punctuation: Eliminating punctuation marks such as periods, commas, and
quotation marks, which do not typically carry meaningful information for many NLP
tasks.

• Stemming and lemmatization: Reducing inflected words to their base or root form.
Stemming involves removing suffixes to obtain the word stem, while lemmatization
maps words to their dictionary form (lemma). This step helps reduce word variations
and improve text normalization.

2.3.2 Embedding

An embedding is a dense vector representation of words or phrases in a continuous vector
space. These embeddings are learned representations that capture semantic and syntactic

4



2.4. LINGUISTIC METHODOLOGIES RELATED TO QUANTIFYING INFORMATIVENESS

information about words based on their context in a text corpus [8]. Word embeddings are
typically learned as part of the training process of neural network-based models, such as
word2vec and GloVe (Global Vectors for Word Representation).

Similarly to word embedding, sentence embedding refers to a fixed-size numerical rep-
resentation of a text sequence or sentence. The primary goal of sentence embeddings is to
capture the semantic meaning and context of the input text in a continuous vector space
[9]. These embeddings are typically learned through deep learning models, particularly
transformer-based architectures such as BERT [10], GPT [11], and their variants.

Sentence embeddings are helpful in various NLP tasks, including text classification, seman-
tic similarity calculation, sentiment analysis, machine translation, and information retrieval.
By encoding the semantic information of a sentence into a fixed-length vector, sentence
embeddings enable downstream models to effectively process and understand textual data
[9].

2.3.3 Transformer

Transformer is a deep learning model architecture primarily used in natural language pro-
cessing tasks. Introduced in the paper "Attention is All You Need" by Vaswani et al. in 2017
[12], it revolutionized NLP with its self-attention mechanism which is the key concept behind
the transformer architecture.

The self-attention mechanism enables the model to weigh the importance of different words
and capture relationships between words in a sequence [13]. These attention scores are
then used to compute weighted sums of the input embeddings, generating context-aware
representations for each word.

Transformer models showed high performance on different NLP tasks. They can be used
to pretrain models on large-scale corpora using self-supervised learning objectives such as
masked language modeling or next-sentence prediction [13]. Also, the pretrained model can
be fine-tuned to task-specific datasets to adapt them to specific NLP tasks, which is also used
for the evaluation of the prototype.

2.4 Linguistic Methodologies Related to Quantifying
Informativeness

The following is a theoretical explanation of computer-linguistic methodologies used to
quantify informativeness in this research. The usage of methodologies is based on the
hypothesis introduced at the end of the section 1.2, which suggests that words with more
informativeness could potentially include more private or sensitive information and, thus,
are more important in terms of privacy protection.

5



2.4. LINGUISTIC METHODOLOGIES RELATED TO QUANTIFYING INFORMATIVENESS

2.4.1 Information Content

In the context of NLP, information content (IC) refers to the amount of knowledge or meaning
contained within a word or a piece of text [7]. It measures how specific or rare the meaning
of a word is within a given context or dataset. The key concept behind information content
is based on the idea that words with more specific or uncommon meanings carry more
information and are, therefore, more informative [14].

WordNet, a lexical database of English, is mainly used to quantify information content.
WordNet organizes words into sets of synonyms called synsets and represents relationships
between them, such as hypernyms (more general concepts) and hyponyms (more specific
concepts). The information content is often calculated using WordNet by measuring the
specificity of a word’s meaning based on its position in the WordNet hierarchy [15]. The IC
value is typically computed based on the frequency of occurrence of a word’s synsets in a
large corpus of text. Words with lower IC values are considered more informative as they
represent more specific or rare concepts.

2.4.2 Part of Speach and POS Tag

Part of speech (POS) refers to the grammatical category of a word in a sentence. It indicates a
word’s role in a sentence’s structure. POS tagging is the process of automatically assigning
the appropriate part of speech tag to each word in a text corpus [7].

The key concept of POS tagging is to categorize words into their respective grammatical
categories, such as nouns, verbs, adjectives, adverbs, pronouns, prepositions, conjunctions,
and determiners. This categorization helps understand the syntactic structure of sentences
and aids in various NLP tasks like parsing, information extraction, and machine translation
[16].

Some commonly used POS tags include [17]:

• Noun (NN)

• Verb (VB)

• Adjective (JJ)

• Adverb (RB)

• Pronoun (PRP)

• Preposition (IN)

• Conjunction (CC)

• Determiner (DT)

• Interjection (UH)

6



2.4. LINGUISTIC METHODOLOGIES RELATED TO QUANTIFYING INFORMATIVENESS

where he letters in parentheses are the tags for the corresponding POS.
The Natural Language Toolkit (NLTK) library [7] is commonly used for POS tagging in

the prototype of this thesis. NLTK is a widely used Python library for NLP tasks, including
tokenization, POS tagging, parsing, and more. One of the most commonly used POS taggers
in NLTK is the PerceptronTagger1, which utilizes a statistical approach. The PerceptronTagger
is based on the perceptron algorithm, a type of linear classifier used in machine learning.
The perceptron algorithm learns a set of weights for each feature in the input data to make
predictions about the output class (POS tag).

2.4.3 Named Entity Recognition

Named Entity Recognition (NER) is a NLP technique used to identify and classify named
entities within a text into predefined categories such as person names, organization names,
locations, dates, and numerical expressions. The primary goal of NER is to extract and label
specific entities from unstructured text data, enabling automated information extraction and
analysis [7, 16].

NER typically employs machine learning algorithms, particularly sequence labeling models
such as Conditional Random Fields (CRF) [18] or Bidirectional Encoder Representations from
Transformers (BERT) [10] trained on annotated datasets. These models analyze the linguistic
features of words in a sentence, such as their context, part-of-speech tags, and neighboring
words, to predict the presence and type of named entities.

The entities commonly recognized by NER systems include [19]:

• Person Names: Individuals’ names, including first names, last names, and titles.

• Organization Names: Names of companies, institutions, agencies, etc.

• Location Names: Place names, such as cities, countries, streets, landmarks, etc.

• Date and Time Expressions: Temporal references like dates, times, duration, etc.

• Numerical Quantities: Numeric expressions such as percentages, monetary values,
measurements, etc.

For NER, the open-source library spaCy2 provides pretrained models that have been
trained on a large corpus and can be used [20]. Using these models offers efficient and fast
performance, and it provides a simple and user-friendly interface for incorporating NER
functionality into NLP pipelines or applications, making it suitable for real-time or large-scale
processing tasks.

The key technology behind spaCy’s NER capability is its use of machine learning models,
specifically neural networks. The models are trained using labeled datasets containing
examples of text with annotated named entities, allowing them to learn to generalize and
identify similar entities in the new text.

1https://www.nltk.org/_modules/nltk/tag/perceptron.html
2https://spacy.io/api/doc
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2.4. LINGUISTIC METHODOLOGIES RELATED TO QUANTIFYING INFORMATIVENESS

2.4.4 Sentence Transformer and Similarity Calculation

Sentence Transformers are a type of deep learning model designed explicitly for encoding
and processing text at the sentence level. Unlike traditional word-level embeddings, which
represent individual words or tokens, sentence transformers generate fixed-length vector
representations for entire sentences [21]. These representations capture the semantic meaning
and context of the sentences, enabling a wide range of NLP tasks such as semantic similarity
calculation, text classification, and information retrieval.

The key idea behind sentence transformers is to leverage pre-training techniques such
as self-supervised learning on large-scale text corpora to learn rich, context-aware sentence
embeddings [22]. Using this embedding, we can calculate the similarities between different
sentences. There are several methods to calculate embedding similarity, depending on the
nature of the embeddings and the specific task. Cosine Similarity is one of the most widely
used similarity measures for embeddings [23]. It measures the cosine of the angle between
two vectors and ranges from -1 (perfectly dissimilar) to 1 (perfectly similar). Cosine similarity
is calculated as the dot product of the two vectors divided by the product of their magnitudes,
i.e.

similarity = cos(θ) =
a · b
|a||b| =

∑n
i=1 aibi√

∑n
i=1 a2

i

√
∑n

i=1 b2
i

, (2.1)

where a and b are n-dimensional vectors.
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3 Literature Review

This chapter provides an overview of existing research on differential privacy in NLP and
highlights the gaps and limitations in current approaches. Additionally, it identifies the need
for a new approach to achieving sentence-level DP by intelligent privacy budget distribution.

3.1 Related Studies on Application of DP in NLP

A number of research studies and implementations have used differential privacy in the
context of NLP tasks. However, the studies so far are mainly focused on word-level embedding
and there is a lack of research regarding the detailed allocation of the privacy budget in
textual data.

A comprehensive review by [24] examines recent advances in DP deep learning models
in NLP tasks, focusing on two main approaches for achieving privacy in DP-NLP: gradient
perturbation-based methods and embedding vector perturbation-based methods. Additionally,
[25] places emphasis on preserving privacy in analyses of textual data, particularly within
large-scale analyses, addressing concerns surrounding customer-supplied data. As another
example, [26] proposes a new notion of privacy called selective differential privacy, dealing
with the sparseness of private information in natural language data to provide strict privacy
guarantees on the sensitive part of the data to increase the utility of the model.

However, critiques of word-level DP approaches have been raised. In [27], they question
word-level DP mechanisms used for text anonymization, advocating for strategies that offer
more flexibility in text generation. They propose an anonymization approach based on
paraphrasing, outperforming traditional word-level mechanisms in experiments. Moreover,
they highlight the linear growth of the privacy budget in DP mechanisms, indicating that the
budget required for privatizing an entire sequence may increase linearly with its length.

Efforts to achieve DP at the sentence level have also emerged, such as SentDP, as introduced
in [28]. This technique ensures strong privacy guarantees at the sentence level for document
embeddings. However, while it focuses on maintaining indistinguishability in embeddings,
the paper does not explicitly address epsilon or privacy budgets.

Despite the progress made in word-level DP mechanisms and the emergence of approaches
targeting sentence-level DP, a gap remains in research concerning the application of individual
privacy budgets at the sentence level.

9



3.2. STUDIES ON PRIVACY BUDGET DISTRIBUTION

3.2 Studies on Privacy Budget Distribution

In the realm of statistics with structured data, researchers have explored various aspects
of privacy budget allocation and the application of differential privacy [29, 30]. However,
the domain of NLP has received comparatively less attention, particularly concerning the
granularity of privacy budget allocation at the sentence level. Despite existing efforts to
explore privacy budget utilization, there remains a notable gap in intelligently distributing
these budgets within textual data to achieve sentence-level differential privacy.

One notable contribution regarding privacy budget distribution is the work by Rosenblatt
et al. [29], which introduces ensemble methods aimed at distributing the privacy budget
wisely to maximize predictive accuracy in models trained on differentially private data. This
approach considers feature importance in informing the distribution of the privacy budget,
enhancing model performance while ensuring privacy preservation.

Similarly, Bakria et al. [30] investigate the optimal distribution of privacy budgets in
differential privacy, particularly in adaptive multi-data consumer scenarios. Their study
tackles the challenge of allocating a given privacy budget among various data consumers,
proposing a method to distribute the budget optimally based on consumer characteristics
and data utilization contexts.

In particular, until now, methods of handling personal information protection budgets in
natural language processing have been naively applied to units (words or tokens). Usually, a
budget for each word is set and the privacy budget for the entire is calculated by multiplying
by the number of words in the text as the budget. Or given a budget for the whole of the
sentence, the budget is divided equally among each word and applied, which is the method
that has been used so far.

This approach does not treat the personal information protection budget as a budget and
does not reflect the actual situation where the budget is limited. Therefore, distribution
and allocation as a budget have not yet been explored, and further research is needed
to effectively distribute and apply the privacy budget within sentence-level text data to
implement sentence-level DP.

3.3 Linguistics Approach for Measuring Informativeness

To explore the academic background of quantifying word importance in terms of privacy
within the sentence, we also explored related studies on relevant linguistics approaches. While
there isn’t a direct method for pinpointing informativeness in a text, there are approaches
within the realm of term extraction that are commonly utilized.

For example, [31] proposes an approach for measuring word significance in a corpus
by utilizing vector length and term frequency. It builds upon the concept of distributed
representations of words as real-valued vectors in a low-dimensional space, commonly
employed for extracting syntactic and semantic features from large text corpora. The research
showed the incorporated approach can reliably measure word significance within a corpus.

Another study [32] introduces a method for computing term specificity, a crucial aspect

10



3.3. LINGUISTICS APPROACH FOR MEASURING INFORMATIVENESS

in understanding word significance, particularly in the context of information retrieval and
summarization. Leveraging Latent Semantic Analysis (LSA), the proposed method models
the learning rate of word meaning, offering insights into effective measuring term specificity.

Furthermore, [33] suggests a method for measuring term informativeness in context. By
utilizing web knowledge to encode term informativeness instead of existing methods that
rely on statistical information from corpora. Assessing the semantic similarity between a term
and its most featured context in a knowledge base such as Wikipedia effectively captures the
significance of terms within their contextual environments.

Using attention [12] could also be considered as one way to extract word informativeness.
Attention mechanisms are primarily used to identify the relevance or importance of different
parts of a sentence or sequence during sequential data processing, such as in recurrent neural
networks (RNNs) or transformer models. While attention mechanisms can help capture the
contextual significance of words within a sentence, they are not typically used to measure the
informativeness or importance of individual words.

Additionally, recent research [34] questions about the faithfulness of importance measures in
language models using attention, demonstrating that the faithfulness of importance measures
is found to be both model-dependent and task-dependent, contradicting previous evaluations
in the field.

Beyond these approaches, various attempts have been made to measure or quantify term
significance by leveraging linguistic analysis. For instance [35] introduces an approach
for measuring word significance by incorporating POS relevance weights to enhance word
embeddings. The research utilizes position-dependent POS relevance weighting matrices
within context windows.

Similarly, [36] proposes a new type of term weight from part-of-speech n-gram statistics,
which represents how informative a term is in general, based on the POS contexts in which it
generally occurs in language.

These approaches offer alternative perspectives on measuring term significance based on
linguistic features.
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4 Methodology

This section presents the overall structure and detailed explanation of each component of
our privacy distribution framework prototype. Also, we introduce the necessary settings and
methodologies to measure and evaluate the influence of the suggested approach on the data.

4.1 Prototype Architecture and Implementation

As mentioned at the end of section 1.2, the base idea of building the distributor is the
assumption that words with more informativeness could potentially include more detectable
information regarding privacy, thus requiring a lower privacy budget allocation to ensure
stronger privacy protection. Here, it is explained how the prototype is designed and structured
and how the epsilon distribution is computed with input data.

4.1.1 Methods for Scoring Informativeness

First, we present methods that can practically quantify the importance of individual words
in a sentence from a natural language processing perspective. These methods are able to
properly reflect statistical and semantic aspects. Accordingly, five numerical methods are
applied.

The following explains the importance of those methods and their benefits:

• Information Content (IC): IC helps identify words that are less common or more specific
within a domain. Words with lower IC scores are considered more informative because
they carry more meaning due to their relative rarity. By incorporating IC, we can
prioritize words that are more likely to convey the core concept of the sentence.

• POS tag weights: POS tags indicate the grammatical function of a word (noun, verb,
adjective, etc.). Assigning different weights to different POS tags reflects their typical
importance in conveying meaning. For example, verbs often play a more central role in a
sentence compared to prepositions. This helps distinguish between function words (like
articles and prepositions) and content words (nouns, verbs, adjectives) that contribute
more to the core meaning [37].

• Named Entity Recognition (NER): NER identifies and classifies named entities like
people, locations, and organizations. These entities are often crucial aspects of a
sentence’s meaning.

12



4.1. PROTOTYPE ARCHITECTURE AND IMPLEMENTATION

• Similarity difference between the sentence and the single word: This method compares
the semantic similarity between the entire sentence and each individual word. Words
with a larger difference in similarity likely contribute more to the overall meaning, as
they introduce new concepts not already conveyed by the rest of the sentence.

• Similarity difference between the sentence and the sentence without each word: This
method compares the semantic similarity of the original sentence to versions where each
word is removed. Words whose removal causes a more significant drop in similarity
are considered more important because their absence significantly impacts the overall
meaning. This approach helps identify words that are crucial for conveying the core
meaning of the sentence, as their removal significantly alters the semantic representation.

4.1.2 Prototyping

The framework, therefore, is a combination of five methods mentioned in section 4.1.1 that
can evaluate and quantify the importance of words in a sentence.

Start

ParametersSentence Epsilon

Preprocessing

Tokens Get Score for each Method

Five Individual Scores

Normalize & Combine

Final Scores Determine Distribution

Final Budget Distribution

Stop

Figure 4.1: Flowchart of the Epsilon Distributor prototype

13



4.1. PROTOTYPE ARCHITECTURE AND IMPLEMENTATION

Figure 4.1 shows the overall flow of the calculation of the epsilon distribution pipeline of
the prototype. When it calculates, it takes as arguments a text, total epsilon value and the
method parameters. The latter decides whether to include a specific scoring method in the
calculation.

First, the input sentence is preprocessed, namely tokenization and punctuation removal
applied. Then, each scoring method scores the processed tokens. The individual scores are
normalized and then combined together as final scores. The final scores are then used to
determine the distribution based on the total epsilon value, and the final distribution of the
epsilon for each token in the sentence is calculated.

The prototype allows for customization of parameters such as deciding which scoring meth-
ods to use, setting different POS weights, and giving the total epsilon of choice. Additionally,
other methods to evaluate informativeness can be easily added to the prototype. This gives
the user the flexibility to adapt the framework to their goals and circumstances.

When the epsilon distributor is initialized, it sets up the necessary tools for scoring, such
as POS weights or lemmatizer. The get_distribution() function is provided to compute
the final distributed epsilon based on the chosen scoring methods and parameters. It takes
the target sentence and the total epsilon value as parameters and additional parameters to
disable each scoring method.

4.1.3 Precondition and Initialization

To run the prototype, the following libraries should be available in the environment:

• NLTK (Natural Language Toolkit) for tokenization, part-of-speech tagging, and WordNet
access.

• spaCy for Named Entity Recognition (NER) and linguistic processing.

• SentenceTransformer for encoding sentences into dense vectors.

• NumPy for numerical computations.

• string for text processing functions.

The prototype initializes with the necessary components, including the SentenceTrans-
former [21] model for encoding sentences and the spaCy library for scoring methods such
as NER. It also defines a set of default parameters and weights for different aspects of word
informativeness in case the user wants to compute the scoring and distribution in various set-
tings. This ensures the prototype is ready for use out-of-the-box and can be easily customized
to suit specific requirements or experimental setups.

4.1.4 Scoring Methods

Concretely, the following scoring methods are implemented:
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4.1. PROTOTYPE ARCHITECTURE AND IMPLEMENTATION

• Information Content (IC): _get_ic()
Utilizes WordNet [15] to calculate words’ Information Content (IC) based on their
semantic relevance. WordNet organizes words into synsets, which are groups of
synonymous words that share an ordinary meaning. The hierarchical structure of
WordNet synsets allows for calculating IC values, which indicate the specificity or rarity
of a word’s meaning within the database. Words with lower IC values are considered
more informative as they are less common or specialized.

In this function, the tokens are lemmatized and converted from a word to its lemma.
Then, the function retrieves possible synsets (sets of synonyms) for each lemma. Here,
it uses pre-computed IC values for different sources like SemCor, Brown corpus, etc,
which were stored when the distributor was initialized. The final IC value for the word
is computed by averaging the IC values of all its retrieved synsets. If no synsets are
found, the IC is set to 1.0 (presumably a neutral value).

• Weight based on POS Tag: _get_pos_informativeness()
Tags POS tags to preprocessed tokens from the original text using NLTK POS tagger for
the English language1 and assigns weights to words based on their Part-Of-Speech (POS)
tags, considering the inherent informativeness of different POS categories. The default
weights used in this prototype are based on POS tags statistics [38, 39] on tweet data,
considering function words and content words [37]. The default weights are assigned as
follows: {’NN’: 15, ’PR’:14, ’VB’:8, ’CD’:6, ’JJ’:3.7, ’RB’:3.4 } . When a
POS tag of a token is not in the list, 0.1 is assigned as the base weight.

• Named Entity Recognition (NER): _get_ner_weights()
Identifies the named entities in the sentence utilizing the spaCy library’s NER func-
tionality2 and assigns higher weights to words corresponding to recognized entities.
The method starts by loading the spaCy English language model using en_core_web_sm
pipeline3 and checks if each word in the sentence is classified as a named entity.
Named entities labels are like the following: {CARDINAL, DATE, EVENT, FAC, GPE,
LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON,
PRODUCT, QUANTITY, TIME, WORK_OF_ART}4. By doubling the weights assigned
to these entities, this method emphasizes the protection of such entities in the privacy
budget distribution process.

• Similarity Difference:
Measures the difference in semantic similarity between the original sentence and a
modified version with the word removed, both at the word and sentence levels. To get
sentence and word embedding, all-MiniLM-L6-v25 from SentenceTransformer library is
used.

1https://www.nltk.org/api/nltk.tag.pos_tag.html
2https://spacy.io/usage/linguistic-features#entity-types
3https://spacy.io/models/en
4https://spacy.io/models/en#en_core_web_sm
5https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

15

https://www.nltk.org/api/nltk.tag.pos_tag.html
https://spacy.io/usage/linguistic-features#entity-types
https://spacy.io/models/en
https://spacy.io/models/en#en_core_web_sm
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


4.1. PROTOTYPE ARCHITECTURE AND IMPLEMENTATION

– Word Similarity (Sentence vs. Word): _get_similarity_single_word_score()
Computes the cosine similarity between the sentence embeddings of the origi-
nal sentence and the embedding of the individual word in the sentence. The
importance measure of the word is determined by taking the absolute value of
the similarity score. Words with higher similarity scores are assumed to be more
crucial for preserving the overall semantic content of the sentence.

– Sentence Similarity (Sentence vs. Sentence): _get_similarity_except_word_score()
Calculate the cosine similarity between the embedding of the original sentence and
a modified sentence without each word. The score is calculated as the absolute
difference with 1 (1-cosine similarity) since the higher similarity indicates a lower
word significance.

4.1.5 Combining and Deriving Final Scores

The prototype integrates the scores obtained from each scoring method to compute a com-
prehensive combined score for each word, reflecting its overall informativeness within the
sentence context. The following steps outline the process of combining scores:

Once individual scores for each word are calculated using the implemented scoring meth-
ods, such as Information Content (IC), Weight based on POS Tag, Named Entity Recognition
(NER), and Similarity Difference at both word and sentence levels, they are normalized to
ensure comparability across different scoring methods. Normalization adjusts the range of
scores to a common scale, facilitating their combination and interpretation. This step prevents
biases introduced by variations in the magnitude or distribution of scores across different
methods.

The normalized scores obtained from each method are combined to derive a unified measure
of word informativeness. This combination process involves aggregating the individual scores
using a predefined algorithm or weighting scheme, which may assign different weights to
scores from each method based on their relative importance or reliability.

After combining the individual scores, the prototype computes a final score for each word,
representing its overall level of informativeness within the sentence. The final score reflects
the collective impact of various linguistic factors, including semantic relevance, grammatical
role, named entity status, and contextual significance.

4.1.6 Epsilon Distribution

Once the combined scores for each word are computed, the prototype allocates the privacy
budget (epsilon) based on these scores. This allocation process ensures that words deemed
more informative receive a larger share of the privacy budget, thereby enhancing the pro-
tection of sensitive information associated with those words. At the same time, it strives
to minimize the impact on data utility by distributing the total epsilon in a manner that
preserves the overall coherence of the text.

Words with higher final scores, indicative of greater informativeness, are prioritized for
the allocation of the privacy budget. These words are considered to carry more sensitive
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4.2. EXPERIMENT AND EVALUATION

distributor = epsilon_distributor()
example_sent = "After graduating from Stanford University,

John Smith moved to Munich to start his new job at SAP,
where he works as a software engineer"

distributor.get_distribution(example_sent, total_epsilon=30)
distributor.print_scores()

Figure 4.2: An example code for executing the epsilon distribution prototpye.

information and warrant a larger share of the privacy budget to safeguard privacy effectively.
The prototype calculates the proportion of epsilon allocated to each word based on its

final score relative to the total score of all words in the sentence. This ensures that more
informative words receive a higher share of the privacy budget.

The user can also check the final result with the print_score() function, which prints the
input sentence and the user parameter settings as well as the final information scores with
the sum of 1 and the final epsilon distribution from the given total epsilon. Executing the
sample code presented in fig. 4.2 leads to the output shown in fig. 4.3.

4.2 Experiment and Evaluation

This research aims to develop a method for intelligently distributing the privacy budget
within a sentence to achieve sentence-level differential privacy. The experiments aimed to
validate this approach by assessing the impact on privacy and utility metrics across various
datasets and differential privacy mechanisms.

This section outlines the methodology for conducting the experiments and evaluating the
proposed differential privacy framework. To assess the privacy and the utility, we first apply
naive transformations to the text data in each data set and then perturb it using the proposed
epsilon distributor mechanism. Subsequently, we fine-tune pre-trained language models on
the naively transformed and perturbed data sets with epsilon distribution. By evaluating the
performance of the fine-tuned model on perturbed data, we aim to compare the performance
scores obtained under different conditions. This comparison allows us to gauge the impact of
the suggested privacy budget distribution method on the utility of the perturbed data and
assess the effectiveness of the proposed approach in preserving privacy.

4.2.1 Dataset

This section describes the datasets utilized in our experiments, detailing their characteristics,
composition, and evaluation metrics. Table 4.1 shows overall information about each dataset
used for the experiment.

For privacy measurement, the following two data sets are used:

• Trustpilot Reviews Gender Dataset (US English) [40]: This dataset comprises a collec-
tion of user reviews from Trustpilot, a consumer review website, focusing on gender-
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4.2. EXPERIMENT AND EVALUATION

All happy families are alike; each unhappy family is unhappy in its own way.
Parameters : Total Epsilon: 1400 | Ner Weight: True | Use IC: True
| Use POS: True | Use Similarity Sentence: True | Use Similarity Word: True |
Token Final Score Final Epsilon Proportion Final Epsilon Distribution
-----------------------------------------------------------------------------
All 0.03625 0.09412 131.77274
happy 0.06462 0.05281 73.93140
families 0.16760 0.02036 28.50348
are 0.07710 0.04426 61.95993
alike 0.07130 0.04786 67.00167
each 0.03003 0.11363 159.08596
unhappy 0.05253 0.06496 90.94904
family 0.14475 0.02357 33.00210
is 0.05816 0.05867 82.13458
unhappy 0.05273 0.06471 90.60006
in 0.01454 0.23462 328.47007
its 0.05544 0.06155 86.17292
own 0.03619 0.09428 131.98729
way 0.13876 0.02459 34.42876
-----------------------------------------------------------------------------
Total 1.00000 1.00000 1400.00000

Figure 4.3: An example output of using the print_scores() function on the example sentence
= "All happy families are alike; each unhappy family is unhappy in its own way."
and total_epsilon = 1400. The output shows the input parameters at the top, the
final score, the epsilon proportion, and the finally distributed epsilon for each
word in the sentence at the bottom.

related topics. The dataset contains the gender of the author as the label. The original
dataset contains 366,210 reviews. Due to computational constraints, a random subset of
36,621 reviews was selected for the privacy measurement experimentation. Each review
includes text content along with gender information.

• Yelp Dataset [41]: The Yelp dataset consists of user reviews and ratings of various
businesses and services on the Yelp platform. It encompasses diverse topics such as
restaurants, hotels, and retail establishments. The dataset contains the 10 author ids as
the label.

For utility measurement, we incorporated the General Language Understanding Evaluation
(GLUE) [42] benchmark, which provides a diverse set of tasks for evaluating language
understanding capabilities across various domains. GLUE aggregates multiple individual
datasets, each targeting specific NLU tasks such as sentiment analysis, textual entailment,
and more.

We utilized the following tasks from the GLUE benchmark:
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Type Dataset Size Metric Avg. word Total ϵ (1- Total ϵ
count Diffractor) (DP-MLM)

Privacy
Trustpilot 36621 Accuracy 45 45 4500

Yelp 17336 Accuracy 182 182 18200

Utility

CoLA 8551/1043 Accuracy 8 8 800
SST-2 30000/872 Accuracy 9 9 900
MRPC 3668/408 Accuracy &

F1 Score
22 22 2200

RTE 2490/277 Accuracy 43 43 4300
STSB 5749/1500 Pearson-

Spearman
correlation

10 10 1000

Table 4.1: Dataset information table with its size, evaluation metric, average word length of
the texts, the total epsilon used for the perturbation per mechanism. The datasets
used for utility evaluation have training and evaluation data separately, as indicated
by the fractions in the "size" column. The "Total ϵ" is based on the standard ϵ value
mentioned in section 4.2.2.

• Corpus of Linguistic Acceptability (CoLA): A dataset for evaluating grammatical
acceptability in natural language processing tasks. It contains sentences labeled as
grammatically correct or incorrect.

• Stanford Sentiment Treebank (SST-2): A sentiment analysis dataset of movie reviews
labeled as positive or negative. Due to its large size (originally 60, 000 examples),
a random subset of 30, 000 examples was used as the training data for the utility
measurement.

• Microsoft Research Paraphrase Corpus (MRPC): A paraphrase identification dataset
containing pairs of sentences labeled as paraphrases or not.

• Recognizing Textual Entailment (RTE): A dataset for natural language inference, where
each example consists of a pair of sentences labeled as either entailing or not entailing.

• Semantic Textual Similarity Benchmark (STSB): A benchmark dataset for measuring
semantic similarity between pairs of sentences, with similarity scores ranging from 0 to
5.

4.2.2 DP Mechanism

Two different text DP mechanisms are used for the data perturbation with- and without
applying the distributed privacy budget.

• 1-Diffractor: 1-Diffractor is a DP mechanism for text obfuscation based on word-level
Metric Local Differential Privacy (MLDP) mechanisms. The standard privacy of this
mechanism was set to 1.
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• DP-MLM: DP-MLM is a DP text rewriting mechanism that leverages masked token
prediction in BERT-based models. The standard privacy of this mechanism was set to
100.

They are both based on the word-level approach in terms of applying the epsilon to the
tokens, but can also take the predefined distribution of the epsilon values for each part of the
input text.

4.2.3 Training and Evaluation Data Construction

The overall flow of the training data construction is visualized in fig. 4.4.

Start

Dataset (text)

1-Diffractor | DP-MLM

1-Diffractor DP-MLM

Naive | ϵ-distr. Naive | ϵ-distr.

D-naive text D-ϵ-distr. text M-naive text M-ϵ-distr. text

Stop

Figure 4.4: Flowchart visualizing how the Training- and Evaluation datasets are created. Each
dataset went through perturbation of both mechanism, once with naively divided
privacy and once with distributed budget using epsilon distributor. As the result
of this process, four variations of the original texts are generated.

To construct the training data, two different differential privacy mechanisms, 1-Diffractor
and DP-MLM, were applied to the previously listed datasets with predefined epsilon values.
The choice of epsilon values was determined based on the average text length in each dataset.
It’s important to note that in this approach, the same epsilon value was applied to each word
in the text. Figure 4.5 and fig. 4.6 show examples of the perturbed dataset.

The original datasets were again perturbed for comparative analysis using the same epsilon
values. However, this time, the epsilon distributor was utilized. Unlike the previous approach,
the epsilon distributor assigns different epsilon values to each word based on the outcome
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of the epsilon distribution process. This enables a more fine-grained allocation of privacy
budgets, where words with higher informativeness receive relatively higher epsilon values
than less informative words.

Constructing training data using both approaches allows for directly comparing their
effectiveness in preserving privacy while maintaining data utility. By applying different
differential privacy mechanisms with varying strategies for epsilon allocation, we aim to
evaluate their impact on the utility and privacy preservation of the datasets.

Figure 4.5: Example of the perturbed data. We present the first four data entries from
the CoLA training dataset, perturbed with DP-MLM. The first column shows
the original text in the dataset, while the third and the fourth column show
respectively the output of the naive- and distributed perturbation.

Figure 4.6: Example of the perturbed data from Trustpilot dataset, perturbed with 1-Diffractor.
The first column shows the original text in the dataset while the second and
the third column show respectively the output of the naive- and distributed
perturbation.

4.2.4 Fine-tuning the Language Model

The DeBERTa-v3-base model [43] was chosen for fine-tuning due to its state-of-the-art per-
formance in various NLP tasks and its capability to capture intricate linguistic patterns in
textual data.

The fine-tuning process used the Hugging Face library6 and PyTorch7 framework for

6https://huggingface.co/docs/hub/models-libraries
7https://pytorch.org/
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4.2. EXPERIMENT AND EVALUATION

intuitive implementation and train parameter setting. The same training setup and arguments
were employed for fine-tuning, including training for the single epoch.

The training dataset was shuffled before the training to introduce randomness and pre-
vent the model from overfitting to specific patterns within the data. This ensures better
generalization and robustness of the fine-tuned model across different samples.

For privacy measurement, the model was fine-tuned on the original dataset. This approach
was adopted to better evaluate the effectiveness of the Epsilon distributor in preserving
privacy compared to conventional methods. Conversely, the model was fine-tuned for
utility measurement based on the perturbed training dataset, which had undergone privacy-
preserving transformations using differential privacy mechanisms.

Start

Modified datasets Pretrained model

Data splitting

Training dataEvaluation data

Fine-tuning

Fine-tuned model

Evaluation of the metric score

Stop

Figure 4.7: Flowchart of the general evaluation process, including fine-tuning the pre-trained
model and obtaining the evaluation results.

4.2.5 Evaluating the Model

Finetuned models on each dataset are used for the evaluation. For privacy evaluation, two
models, trained on Trustpilot and Yelp datasets, were assessed using the perturbed dataset
with and without applying the epsilon distributor. The evaluation focused on accuracy as the
primary metric, measuring the model’s performance in correctly predicting labels: gender in
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Trustpilot and author in Yelp. The lower the model’s prediction performance indicates the
better the privacy of the data perturbation results.

The evaluation process was conducted three times on random subsets of the dataset (20%),
and the results were averaged to obtain a representative accuracy score. This approach helped
mitigate the impact of dataset variability.

For the utility evaluation, evaluation datasets are used for each GLUE dataset used for
pretraining respectively. The models trained on the perturbed training datasets with- and
without applying the epsilon distributor were evaluated on the perturbed datasets with and
without applying the epsilon distributor respectively. Each dataset was evaluated using its
respective metric, which can be found in table 4.1.

Like the privacy evaluation, the utility evaluation process involved executing the evaluation
three times and averaging the results. This evaluation approach ensured a comprehensive
review of the quality of the perturbed data, which affects the model’s performance across
different NLP tasks.
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5 Results

This chapter presents the prototype’s interim result and privacy and utility evaluation results.

5.1 Interim Findings

To show the outcome of the prototype, an example sentence and total privacy budget is
applied to the prototype with the default settings.

The prototype was initialized with the following settings:

• Example Sentence: "After graduating from Stanford University, John Smith moved to Munich
to start his new job at SAP, where he works as a software engineer."

• Total Epsilon: 30

• Method Parameters: Default parameters

– Information Content (IC): Enabled

– Part-of-Speech (POS) Tag Weighting: Enabled

– NER Weighting: Enabled

– Word Similarity: Enabled

– Sentence Similarity: Enabled

The numeric value of scores from the scoring methods and the final score, as well as the
distribution of the privacy budget, can be found in table 5.1.

The left side of table 5.1 shows the interim results of each scoring method, the final
normalized score, and the distributed epsilon value of each token. Figure 5.1 visualizes the
normalized scores from the scoring methods, providing a better visual comparison.

• IC Score: By IC scoring method, words such as "software" received relatively higher
scores due to their specificity, followed by "John", "moved", and "works".

• POS Tag Score: Based on the pre-defined weights, nouns such as "job", "software" and
"engineer" got higher scores.

• NER Score: In the NER scoring method, words like "Standard" and "John" are identified
as named entities and are weighted.

• Sentence Similarity Score: By this method, words such as "Munich", "Smith", or "SAP"
got high scores since the similarity between the original sentence and sentence excluding
those words was low.
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• Word Similarity Score: Words such as "SAP", "Stanford", or "University" showed a
higher similarity to the original sentence and therefore got higher scores.

Token IC POS NER Sentence Sim. Word Sim. Final Score ϵ

After 1.0 0.1 0 0.0176 0.0510 0.0106 2.1480
graduating 185.17 8 0 0.0195 0.2069 0.0340 0.6698
from 1.0 0.1 0 0.0115 0.0431 0.0077 2.9379
Stanford 44.9 15 1 0.0298 0.3098 0.0544 0.4185
University 7410.33 15 1 0.0180 0.2483 0.0604 0.3767
John 17607.56 15 1 0.0492 0.1420 0.0844 0.2696
Smith 1740.58 15 1 0.1129 0.2719 0.0851 0.2675
moved 16475.69 8 0 0.0317 0.1485 0.0675 0.3373
to 1.0 0.1 0 0.0135 0.0534 0.0093 2.4536
Munich 129.2 15 1 0.1239 0.2350 0.0828 0.2749
start 5149.93 8 0 0.0111 0.0703 0.0303 0.7510
his 1.0 14 0 0.0167 0.1135 0.0326 0.6971
new 1.0 3.7 0 0.0138 0.0276 0.0119 1.9199
job 14954.66 15 0 0.0132 0.1162 0.0638 0.3568
at 10.4 0.1 0 0.0143 0.0551 0.0097 2.3423
SAP 300.48 15 1 0.0679 0.3545 0.0723 0.3148
where 1.0 0.1 0 0.0140 0.0693 0.0107 2.1205
he 135.9 14 0 0.0153 0.1048 0.0317 0.7177
works 17173.41 8 0 0.0100 0.0169 0.0505 0.4505
as 53.84 0.1 0 0.0131 0.0084 0.0057 4.0204
a 48.2 0.1 0 0.0116 0.0491 0.0083 2.7288
software 37852.6 15 0 0.0250 0.1338 0.1169 0.1948
engineer 1549.1 15 0 0.0233 0.2604 0.0512 0.4446

Table 5.1: Summary of the outcome of executing the budget distribution with the prototype
for the example given in fig. 4.2. "IC", "POS", "NER", "Sentence Sim.", "Word Sim."
represents the scores of each scoring method mentioned in section 4.1.1, and "Final
Score" represents the combined and normalized final scores. ϵ is the assigned
budget out of the total budget which was set to 30.

Each word’s final score and distributed epsilon is presented on the right side of the table 5.1.
Both results are also visualized in fig. 5.2. The result shows that words such as "software"
and "Munich" received high scores (0.1169 and 0.0828, respectively). Those words with higher
scores received smaller portions of epsilon. Words such as "from" and "to", which received
fewer informativeness scores, received bigger allocations of epsilon. For example, the word
"software" received 0.1948 from the total privacy budget. Conversely, the word "as" received
4.0204 out of the total epsilon.
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5.2 Privacy & Utility Evaluation Result

5.2.1 Main Privacy & Utility Evaluation Result

Table 5.2 presents the complete privacy and utility evaluation results. The key information
about each dataset, including the total privacy budget per text data point used for perturbation,
is stated in table 4.1. The detailed experimental setup is mentioned in section 4.2.

Additionally, fig. 5.3 visualizes the result from table 5.2, emphasizing the difference between
conventional (naive) and suggested (distributed) approach. The data points on the left side of
the vertical line (the scores obtained using Trustpilot and Yelp datasets) in fig. 5.3 present
the privacy evaluation results. The Figure compares the accuracy of privacy-preserving
mechanisms, namely 1-Diffractor and DP-MLM, with and without applying the epsilon
distributor across two datasets: Trustpilot and Yelp reviews. We further show for comparison
the baseline score with the original dataset in fig. 5.3 and table 5.2.

The utility evaluation results for different datasets are presented on the right side of the
vertical line in the panels of fig. 5.3. The model is trained and evaluated on datasets perturbed
by two different mechanisms, with and without applying the epsilon distributor, to assess the
impact on utility.

Dataset Baseline 1-Diffractor DP-MLM
naive ϵ-distr. naive ϵ-distr.

Trustpilot 0.701 0.645 0.622 0.637 0.610
Yelp 0.325 0.258 0.220 0.180 0.175

CoLA 0.847 0.718 0.699 0.691 0.693
MRPC-acc 0.877 0.850 0.868 0.762 0.704
MRPC-F1 0.903 0.887 0.906 0.839 0.809
SST-2 0.950 0.905 0.885 0.876 0.834
RTE 0.722 0.613 0.560 0.502 0.531
STSB 0.894 0.803 0.657 0.693 0.416

Table 5.2: Privacy and utility results with 1-Diffractor and DP-MLM various datasets. The
scores represent the average of the results of three runs. The scores in the "Baseline"
column represent the results on original data, while "1-Diffractor" and "DP-MLM"
shows the results on the modified data, perturbed by them respectively. Meanwhile
"naive" contains the result from the perturbed data, with equally allocated privacy
budget to each token, while "ϵ-distr." shows the result from the ones with distributed
ϵ values calculated by the prototype. The evaluation index for all datasets is the
accuracy. For MRPC the extra metric (F1 score) is used. For the STSB dataset, the
Pearson-Spearman correlation is used.
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5.2.2 Sub-experiment: Stop-word Filtering

Additional experiments and privacy evaluation were conducted, with datasets perturbed
without the stop-words filtering option of the DP mechanisms in section 4.2.2 and with a
stricter privacy budget. For this sub-experiment, the half of the Trustpilot sample dataset
was used. Table 5.3 shows the results of this additional experiment, in which the Trustpilot
dataset is used. The first row represents the result of the main experiment from table 5.2
of Trustpilot, which was perturbed in default mechanism parameters including stop-word
filtering. The other two rows present the results obtained by using the Trustpilot dataset,
perturbed without the stop-word filtering option in each mechanism. For the Trustpilot (Stop
1/2), half of the default budget was applied for comparison.

Dataset Baseline 1-Diffractor DP-MLM
budget naive ϵ-distr. diff. budget naive ϵ-distr. diff.

Trustpilot
(Ref.) 0.693 45 0.645 0.622 −0.023 4500 0.637 0.610 −0.027

Trustpilot
(Stop) 0.693 45 0.628 0.612 −0.016 4500 0.584 0.581 −0.003

Trustpilot
(Stop 1/2) 0.693 22 0.595 0.576 −0.019 2200 0.579 0.562 −0.017

Table 5.3: Privacy score (accuracy) comparison of stop words filtering and applying a smaller
privacy budget. As a reference, the first row, "Trustpilot (Ref.)", is taken from the
Trustpilot results in table 5.2. "Trustpilot (Stop)" is a dataset which is perturbed
without the stop-word filtering option of the two mechanisms. "Trustpilot (Stop
1/2)" is a dataset generated from data perturbation without stop-word filtering
and with a stricter (lower) privacy budget. The "diff." column shows the difference
between the score obtained with the ϵ distribution and the score obtained with the
naive distribution. All shown scores are the average of three independent runs.

5.2.3 Sub-experiment: Word-level vs. Sentence-level Privacy Budget

Another sub-experiment was conducted to show the impact of privacy budget distribution in
individual privacy budget applications. It is one of the conventional word-level approaches
for deciding the epsilon values of the text data. Contrary to the main experiment, where the
epsilon values of the entire dataset are fixed with the average length of the text data points,
this approach uses individual privacy budgets for each data point based on the size of the
respective single text data entry. Table 5.4 presents the results of the privacy evaluation on
the Trustpilot and Yelp data, for which the data were perturbed with 1-Diffractor.
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Dataset Baseline Individual budget Fixed budget
budget naive ϵ-distr. diff. budget naive ϵ-distr. diff.

Trustpilot 0.693 len(text) 0.671 0.618 −0.053 45 0.645 0.622 −0.023

Yelp 0.325 len(text) 0.303 0.195 −0.108 182 0.258 0.220 −0.038

Table 5.4: Results of the privacy scores for different budget settings. For the data perturbation
in individual budget setting, the privacy budget is determined individually based
on the word counts of each data point and applied respectively. The fixed budget
setting refers to the default setting used in table 4.1. The "budget" column represents
the total privacy budget used for each text in the datasets, and the others are the
same as described in table 5.3. 1-Diffractor is used for the data perturbation. The
random subsets (10%) of the datasets are used for the evaluation.
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Figure 5.1: Normalized results of each scoring method. The values on the vertical axis
correspond to the normalized informativeness score of each scoring method.
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Figure 5.2: Result of combining scores from scoring method (see fig. 5.1) and final distribution
of epsilon. The values on the vertical axis of the left chart correspond to the
relative informativeness of corresponding words in the sentence as percentages.
On the right plot the distributed epsilon values are shown on the vertical axis,
given the total epsilon of 30.
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Figure 5.3: Comparison between 1-Diffractor (left) and DP-MLM (right) utilizing the naive-
and the distributed approach for different datasets. The values on the vertical axis
correspond to the score on the dataset-dependent metric; see table 4.1. Contrary
to the other datasets, a lower metric score indicates higher privacy for Trustpilot
and Yelp.
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6 Discussion

6.1 Key Findings

The analysis of the experiment results revealed several key findings.

The consistent improvement of privacy First, the experiments demonstrated that the
proposed method of intelligently distributing the privacy budget within sentences can consis-
tently enhance privacy. The result of the main experiments, shown in tables 5.2 to 5.4, proves
that, in all considered configurations, the data perturbed with the privacy budget distribution
prototype recorded lower scores. This reflects better privacy preservation.

In the Trustpilot dataset, applying the epsilon distributor leads to a decrease in accuracy
from 0.645 to 0.622 for 1-Diffractor and from 0.637 to 0.610 for DP-MLM. Similarly, in the
Yelp dataset, the accuracy decreases from 0.258 to 0.220 for the 1-Diffractor and from 0.180 to
0.175 for DP-MLM when using the epsilon distributor. In fig. 5.3, this impact of the epsilon
distributor on the data is visualized. On the left side of the vertical line in both panels, scores
from the perturbation with a naively distributed privacy budget (red points) are higher than
those using the suggested epsilon distributor prototype (blue points), indicating consistent
privacy improvement.

Also, the result from the other two sub-experiments—in which stop-word filtering was
disabled or different epsilon values were applied—indicates a consistent improvement in
terms of privacy protection. Table 5.4 shows that with the Trustpilot dataset, the accuracy
scored lower when the ϵ distribution is applied, no matter which mechanism was used.
Furthermore, privacy protection showed better results when the data is perturbed with
and without stop word filtering, as shown in table 5.3. For instance, with the stop-word
replacement option, the accuracy decreased from 0.628 to 0.612 with 1-Diffractor. Similarly,
with DP-MLM, privacy protection improved slightly (from 0.584 to 0.581). With stricter
(smaller) epsilon values, the degree of improvement is more significant. The accuracy shrunk
from 0.595 to 0.576 with 1-Diffractor and from 0.579 to 0.562 with DP-MLM. Compared to the
above results, the magnitude of the difference has increased from 0.016 to 0.019 and from
0.003 to 0.017.

In summary, the results demonstrate that in general, the epsilon distributor effectively
enhances privacy preservation regardless of the setting, including choosing a privacy budget
or perturbation mechanism.
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Maintenance and loss of utility Furthermore, in many cases, the utility has been maintained.
Overall, the results suggest that applying the epsilon distributor has maintained the utility,
mostly resulting the similar performance scores observed across the datasets.

In table 5.2, with datasets like SST-2, MRPC, and CoLA, the utility shows certain consistency
between the naively perturbed dataset and the dataset perturbed with the epsilon distributor.
For example, in the CoLA dataset, the accuracy scored lower when using epsilon distributor
on 1-Diffractor (from 0.718 to 0.699); however, the accuracy increased on DP-MLM (from 0.691
to 0.693). Similarly, the accuracy with 1-Diffractor showed a slight improvement from 0.850 to
0.868, while the score with DP-MLM decreased from 0.762 to 0.704. Also, in RTE, the metric
showed both improvement and decline depending on the perturbation mechanism.

However, it was also observed that there were instances where the utility scores decreased,
particularly in certain datasets and with specific differential privacy mechanisms. Some
datasets, such as STSB and SST-2, display noticeable differences in utility between the
perturbed datasets with and without applying the epsilon distributor. The result in the SST-2
dataset shows a loss of utility scores. The accuracy score declined when using 1-Diffractor
with the epsilon distributor compared to the naively perturbed dataset (from 0.905 to 0.885).
The score drops from 0.876 to 0.834 using DP-MLM. In the STSB dataset, the loss was bigger.
Using 1-Diffractor with the epsilon distributor decreases the Pearson-Spearman correlation
from 0.803 to 0.657 compared to the naively perturbed dataset. Similarly, the correlation
coefficient decreases from 0.693 to 0.416 in the same scenario but using DP-MLM.

In fig. 5.3, the comparison of utility measurements can be seen on both panels’ right side of
the vertical line. The utility scores generally remained similar or decreased by a relatively
small difference. However, in some datasets, the loss is noticeable.

These variations in utility scores across datasets and metrics may suggest that the impact of
applying the epsilon distributor may depend on the dataset characteristics, task requirements,
and specific differential privacy mechanisms used. For example, the STSB dataset, which is,
in contrast to other datasets, a regression task, where models predict a continuous similarity
score between pairs of sentences. It can be assumed that the utility loss is particularly
large in this data set because of the nature of this task. Therefore, further investigations on
various aspects are necessary to ensure consistent utility preservation in differential privacy
applications for NLP tasks.

Additional insights on budget choice and stop-word filtering Via the results shown in
table 5.3, we can note that the effect of improving privacy remains even when the stop-word
filtering option of the mechanisms are disabled. Similarly to the result using default settings
of 1-Diffractor and DP-MLM, the privacy scores of the result using the stop-word filtering
setting are also decreased when the epsilon distribution was applied.

Another notable point is that both mechanisms showed better information protection (low
accuracy) when no stop word filtering was applied. For the data presented in table 5.3,
privacy was measured higher when data was modified with the stop-word filtering turned off
(Trustpilot (Stop)), compared to when the data was disturbed by the default setting (Trustpilot
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(ref.)). There may be several interpretations of these results. One possible argument is that
when stop-words filtering is applied, the budgets are already distributed to the stop-words.
Still, due to the filtering, the modifications of those words are ignored. Because the budget is
wasted, less will be assigned to words other than the stop-words, causing more disturbance
and higher privacy levels.

Another finding is related to the limitation of the total budget. It was found that the
more limited the budget, the more difference there was in improving privacy. Comparing
the last two rows from table 5.3, the privacy improvement was −0.016 and −0.003 with
1-Diffractor and DP-MLM, respectively. However, when the budget was cut in half, the
difference increased to −0.019 and −0.017 respectively. Especially for DP-MLM, the margin
of improvement has increased by more than five times. This result shows that applying the
epsilon distribution can achieve a high degree of privacy improvement when the budget
is limited in the same environment. The reason for this result can be explained as follows:
tightening the budget can result in the wasteful application of less budgeting to non-important
words and, therefore, forcing higher privacy protection to those words, which is likely to
disrupt all words more than necessary. Thus, distributing fewer budgets can be more critical
to the privacy outcome.

Finally, the results of the sub-experiment conducted in section 5.2.3 indicate how budget
selection affects privacy evaluation. Table 5.4 shows the privacy scores resulting from
perturbed data with 1-Diffractor with different budget settings. Unlike the fixed budget
approach, where the privacy budget is a fixed value for the whole dataset and which was
used as the default in this experiment, in the individual budget approach, the budget applied
to each data point in the dataset varies. The personal budget for text depends on the number
of characters in the text. Although it can be difficult to directly compare the result values of
the two approaches due to differences in the selection of training and evaluation data within
the dataset, these results show that the overall privacy improvement was more significant in
the individual budget approach than the fixed budget approach. In both Trustpilot and Yelp
data sets, the degree of improvement in the individual budget setting was larger (−0.053 and
−0.108 respectively for Trustpilot and Yelp) than in the fixed budget environment (−0.023
and −0.038). These results can be interpreted as privacy improvement through the epsilon
distributor, which can be greater when an appropriate budget is selected for each data. In
the individual budget setting, the budget is determined and allocated to each data according
to its length. Therefore, it could mean that applying the epsilon distribution significantly
improves privacy, which means that setting the privacy budget according to the data can be
an important factor in improving the results of using distribution.

6.2 Implications and Contributions

This work makes several contributions to the field of privacy-preserving NLP. Firstly, it
introduces an approach to distributing the privacy budget within sentences, potentially
enhancing privacy protection in NLP applications. By incorporating linguistic methods for
estimating the amount of information in words, this approach provides a more detailed
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understanding of word importance, allowing more accurate allocation of privacy budgets at
the sentence level.

Additionally, the prototype developed in this study is designed to be extendable and
customizable, allowing the users to adapt it to their specific needs and requirements. As
a framework that provides privacy budget distribution, which is directly applicable to
differential privacy mechanisms, this prototype offers flexibility and scalability for privacy
NLP applications.

As a result, this study brings forth several significant implications:
Exploration of New Approaches By pioneering a novel approach to distributing privacy

budgets at the sentence level and quantifying informativeness, this research opens new
avenues in NLP differential privacy. Departing from the conventional equal distribution of
privacy budgets across all words, it proposes a fresh alternative and validates its efficacy.
This advancement in theoretical understanding, particularly the attempt to adapt DP at
sentence-level NLP, contributes to a broader discourse on privacy preservation.

Practical Insights The practical evaluation of the proposed framework provides valuable
insights into its effectiveness in safeguarding privacy while preserving the utility of textual
data across various NLP applications. This research bridges the gap between theoretical
advancements and pragmatic implementations in privacy-preserving NLP by advancing a
practical solution of applying DP in textual data tailored to real-world scenarios with finite
privacy budgets.

6.3 Challenges and Future Improvements

Although the proposed approach has been shown to be promising for addressing privacy
issues at the sentence level within NLP, it has faced several challenges during this research.
These challenges highlight areas of improvement in the present thesis and suggest future re-
search directions to improve the effectiveness and applicability of the proposed methodology.

One of the primary challenges faced during the research is the exploration of the linguistic
method of estimating the amount of information in words. There have been many studies
on information analysis or vectorization of textual data. Still, finding a process or study
to quantify this information absolutely or relatively in linguistic terms was challenging.
Furthermore, the scoring methods in the suggested prototype mostly rely on statistical
approaches because of the lack of research on informativeness or word significance using
a semantic approach. This could cause an imbalance in measuring informativeness since
exploring semantic features may provide deeper insights into the importance of words in
context. Further research could, therefore, investigate the use of linguistic methods for
calculating word informativeness, such as analyzing the information content of different parts
of speech. Understanding which parts of speech convey more information linguistically could
lead to more accurate scoring methods within the prototype.

Expanding this prototype is also a challenge left for the future. Adding additional scoring
methods and adjusting more reasonable weights assigned to each technique could enhance
the overall effectiveness of the prototype. Conducting individual evaluations of each scoring
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method to determine their impact on privacy- and utility metrics could help optimize the
scoring process.

Another limitation of this study was determining the budget. The privacy budget used in
the experiment of this study cannot be said to be the most appropriate since each mechanism
has a difference in scale, and it is difficult to estimate the degree of its impact on the data
perturbation. For the uniformity of time constraints and experimental environment settings,
this study applied one criterion; the basic privacy budget was set for each mechanism (1 for
1-Diffractor and 100 for DP-MLM), and the privacy budget for each dataset was fixed with
the average number of words in the text data in the dataset. Testing the prototypes with
different privacy budgets could give more insight into the impact of varying epsilon values
on the effectiveness of the suggested approach. This exploration may uncover optimal privacy
budget settings for different datasets and applications.

Additionally, testing the effectiveness of the proposed method in other environments or
settings not performed in this study could be one of the future work to be done. For example,
experimenting with DP mechanisms beyond those used in the current study could offer
insights into the comparative effectiveness of different approaches.

Conducting additional tests under different settings and conditions, such as choosing
different pretrained models or using various parameters in the fine-tuning and evaluation
steps, could help identify factors that influence the robustness and stability of the proposed
approach.

Finally, as computational resources are often limited, considering computational efficiency
improvements in the prototype could enhance its practicality and scalability.
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7 Conclusion

Ensuring individual confidentiality is a critical concern, particularly as the volume of text-
based data is rapidly increasing across various natural language processing (NLP) applications.
Differential privacy (DP) emerges as a promising framework to address these issues, providing
strong guarantees through statistical methods and enabling meaningful data analysis while
protecting sensitive information within datasets. Recently, research on the practical use of DP
has been active in the field of NLP. Nevertheless, since most approaches focus on the word
level, there is a need to explore DP at the sentence level. Additionally, research on privacy
budget, an essential element in DP, remains relatively unexplored from an NLP perspective.

This thesis aimed to bridge this gap by proposing a new approach. To address this goal,
we suggested to apply DP at the sentence level in the context of NLP by distributing the
privacy budget to individual tokens within the sentence. The main idea of this approach is to
calculate an individualized budget based on the quantified informativeness of each token in
the sentence.

To investigate this idea, we developed a prototype that, given a text, calculates the relative
informativeness of tokens within it and distributes a given privacy budget based on this.
This prototype includes five linguistic base scoring methods and allows users to select a
method or transform detailed weights. The evaluation of the proposed method comprises
i) the application of the prototype to an actual DP mechanism to convert the data and ii)
fine-tuning and evaluating a pre-trained language model on the perturbed data.

The evaluation’s overall result demonstrates that applying the epsilon distribution generally
increases privacy preservation while maintaining the utility of the text data. Our evaluation
results consistently showed that using the epsilon distribution method led to lower privacy
accuracy scores. This indicates improved privacy protection compared to a conventional
naive approach, which distributes the given privacy budget equally to every token in the text.
Importantly, this privacy enhancement was achieved without significant loss of utility across
various datasets and differential privacy mechanisms.

In terms of contributions, our research advances the theoretical understanding of DP in
the context of NLP, particularly at the sentence level, contributing to broader discussions
on privacy preservation. Furthermore, our practical evaluation of the proposed framework
provides insights into its effectiveness for protecting sensitive information in diverse NLP
applications. Our work addresses critical challenges in privacy-preserving NLP by offering a
usable solution for practical use cases with finite privacy budgets.

Future research may explore ways to further improve our approach, incorporating semantic
methods for quantifying token informativity and exploring alternative mechanisms for privacy.
Moreover, extending the scope of the analysis to a variety of datasets and NLP tasks will
provide deeper insights into the generalizability and robustness of our approach.
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